Design of Axial-flux Permanent-magnet Low-speed Machines and Performance Comparison between Radial-flux and Axial-flux Machines

نویسندگان

  • Asko Parviainen
  • Juha Pyrhönen
چکیده

Thesis for the degree of Doctor of Science (Technology) to be presented with due permission for public examination and criticism in the auditorium 1382 at Lappeenranta ABSTRACT Asko Parviainen This thesis presents an alternative approach to the analytical design of surface-mounted axial-flux permanent-magnet machines. Emphasis has been placed on the design of axial-flux machines with a one-rotor-two-stators configuration. The design model developed in this study incorporates facilities to include both the electromagnetic design and thermal design of the machine as well as to take into consideration the complexity of the permanent-magnet shapes, which is a typical requirement for the design of high-performance permanent-magnet motors. A prototype machine with rated 5 kW output power at 300 min-1 rotation speed has been designed and constructed for the purposes of ascertaining the results obtained from the analytical design model. A comparative study of low-speed axial-flux and low-speed radial-flux permanent-magnet machines is presented. The comparative study concentrates on 55 kW machines with rotation speeds 150 min-1 , 300 min-1 and 600 min-1 and is based on calculated designs. A novel comparison method is introduced. The method takes into account the mechanical constraints of the machine and enables comparison of the designed machines, with respect to the volume, efficiency and cost aspects of each machine. It is shown that an axial-flux permanent-magnet machine with one-rotor-two-stators configuration has generally a weaker efficiency than a radial-flux permanent-magnet machine if for all designs the same electric loading, air-gap flux density and current density have been applied. On the other hand, axial-flux machines are usually smaller in volume, especially when compared to radial-flux machines for which the length ratio (axial length of stator stack vs. air-gap diameter) is below 0.5. The comparison results show also that radial-flux machines with a low number of pole pairs, p < 4, outperform the corresponding axial-flux machines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Analysis of a Novel Three-phase Axial Flux Switching Permanent Magnet Generator with Overlapping Concentrated Winding

This paper proposes a novel axial flux switching permanent magnet generator for small wind turbine applications. Surface mounted axial flux switching permanent magnet (SMAFSPM) machine is a new type of these machines that is introduced in this paper. One of the most important challenges in optimal designing of this kind of machines, is ease of construction and maintenance. One of the main featu...

متن کامل

Optimal Design of Axial Flux Permanent Magnet Synchronous Motor for Electric Vehicle Applications Using GAand FEM

Axial Flux Permanent Magnet (AFPM) machines are attractive candidates for Electric Vehicles (EVs) applications due to their axial compact structure, high efficiency, high power and torque density. This paper presents general design characteristics of AFPM machines. Moreover, torque density of the machine which is selected as main objective function, is enhanced by using Genetic Algorithm (GA) a...

متن کامل

Comprehensive Parametric Study for Design Improvement of a Low-Speed AFPMSG for Small Scale Wind-Turbines

In this paper, a comprehensive parametric analysis for an axial-flux permanent magnet synchronous generator (AFPMSG), designed to operate in a small-scale wind-power applications, is presented, and the condition for maximum efficiency, minimum weight and minimum cost is deduced. Then a Computer-Aided Design (CAD) procedure based on the results of parametric study is proposed. Matching between t...

متن کامل

Sensor-less Vector Control of a Novel Axial Field Flux-Switching Permanent-Magnet Motor with High-Performance Current Controller

Axial field flux switching motor with sandwiched permanent magnet (AFFSSPM) is a novel of flux switching motor. Based on the vector control method, the mathematical model of the AFFSSPM is derived and the operating performance of the AFFSSPM in the overall operating region is investigated.A novel control method for the AFFSSPM drive system, including the id =0, maximum torque per ampere, consta...

متن کامل

Comparison of the Eccentricity Faults Effects on the Performance of several Toroidal Wounded Axial Flux Permanent Magnet Motors

Eccentricity fault is one the most common fault types of disk-type permanent magnet machines, which could lead to devastating effects. Unfortunately, most of the previous works have studied this fault and its detection techniques for slotted structure with common winding. Therefore, in this paper, the effects of eccentricity faults on the performance of single-sided slotted, single-sided slotle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005